

python-anyvcs 1.4 (1.4.0)

python-anyvcs is an abstraction layer for the homogenous, local handling of:

	Bare and non-bare Git repositories

	Mercurial repositories

	Subversion repositories (what svnadmin create makes)

Getting Started

Here’s a simple example for an existing repository:

>>> import anyvcs
>>> repo = anyvcs.open('/path/to/repo')

repo is an instance of anyvcs.common.VCSRepo with a variety of
operations available for it.

Contents

	The primary API
	Opening and Creating

	VCSRepo

	BlameInfo

	CommitLogEntry

	FileChangeInfo

	Git-specific functionality
	GitRepo

	Mercurial-specific functionality
	HgRepo

	Subversion-specific functionality
	SvnRepo

Indices and tables

	Index

	Module Index

	Search Page

The primary API

Opening and Creating

In addition to instantiating subclasses of anyvcs.common.VCSRepo
directly, you can also these utility functions which will infer the type based
on the given parameters.

	
anyvcs.open(path, vcs=None)

	Open an existing repository

	Parameters:	
	path (str) – The path of the repository

	vcs – If specified, assume the given repository type to avoid
auto-detection. Either git, hg, or svn.

	Raises:	UnknownVCSType – if the repository type couldn’t be inferred

If vcs is not specified, it is inferred via probe().

	
anyvcs.probe(path)

	Probe a repository for its type.

	Parameters:	path (str) – The path of the repository

	Raises:	UnknownVCSType – if the repository type couldn’t be inferred

	Returns str:	either git, hg, or svn

This function employs some heuristics to guess the type of the repository.

	
anyvcs.clone(srcpath, destpath, vcs=None)

	Clone an existing repository.

	Parameters:	
	srcpath (str) – Path to an existing repository

	destpath (str) – Desired path of new repository

	vcs (str) – Either git, hg, or svn

	Returns VCSRepo:

	 	The newly cloned repository

If vcs is not given, then the repository type is discovered from
srcpath via probe().

	
anyvcs.create(path, vcs)

	Create a new repository

	Parameters:	
	path (str) – The path where to create the repository.

	vcs (str) – Either git, hg, or svn

VCSRepo

	
class anyvcs.common.VCSRepo(path, encoding='utf-8')

	The most base type

	
ancestor(rev1, rev2)

	Find most recent common ancestor of two revisions

	Parameters:	
	rev1 – First revision.

	rev2 – Second revision.

	Returns:	The common ancestor revision between the two.

	
blame(rev, path)

	Blame (a.k.a. annotate, praise) a file

	Parameters:	
	rev – The revision to blame.

	path (str) – The path to blame.

	Returns:	list of annotated lines of the given path

	Return type:	list of BlameInfo objects

	Raises:	
	PathDoesNotExist – if the path does not exist.

	BadFileType – if the path is not a file.

	
branches()

	Get list of branches

	Returns:	The branches in the repository

	Return type:	list of str

	
canonical_rev(rev)

	Get the canonical revision identifier

	Parameters:	rev – The revision to canonicalize.

	Returns:	The canonicalized revision

The canonical revision is the revision which is natively supported by
the underlying VCS type. In some cases, anyvcs may annotate a revision
identifier to also encode branch information which is not safe to use
directly with the VCS itself (e.g. as created by compose_rev()).
This method is a means of converting back to canonical form.

	
cat(rev, path)

	Get file contents

	Parameters:	
	rev – The revision to use.

	path (str) – The path to the file. Must be a file.

	Returns:	The contents of the file.

	Return type:	str or bytes

	Raises:	
	PathDoesNotExist – If the path does not exist.

	BadFileType – If the path is not a file.

	
changed(rev)

	Files that changed from the rev’s parent(s)

	Parameters:	rev (list of FileChangeInfo.) – The revision to get the files that changed.

	
compose_rev(branch, rev)

	Compose a revision identifier which encodes branch and revision.

	Parameters:	
	branch (str) – A branch name

	rev – A revision (can be canonical or as constructed by
compose_rev() or tip())

The revision identifier encodes branch and revision information
according to the particular VCS type. This is a means to unify the
various branching models under a common interface.

	
diff(rev_a, rev_b, path=None)

	Diff of two revisions

	Parameters:	
	rev_a – The start revision.

	rev_b – The end revision.

	path (None or str) – If not None, return diff for only that file.

	Returns str:	The diff.

The returned string contains the unified diff from rev_a to rev_b with
a prefix of one (suitable for input to patch -p1).

	
empty()

	Test if the repository contains any commits

	Returns bool:	True if the repository contains no commits.

Commits that exist by default (e.g. a zero commit) are not counted.

	
heads()

	Get list of heads

	Returns:	The heads in the repository

	Return type:	list of str

	
log(revrange=None, limit=None, firstparent=False, merges=None, path=None, follow=False)

	Get commit logs

	Parameters:	
	revrange – Either a single revision or a range of revisions as a
2-element list or tuple.

	limit (int) – Limit the number of log entries.

	firstparent (bool) – Only follow the first parent of merges.

	merges (bool) – True means only merges, False means no merges,
None means both merges and non-merges.

	path (str) – Only match commits containing changes on this path.

	follow (bool) – Follow file history across renames.

	Returns:	log information

	Return type:	CommitLogEntry or list of CommitLogEntry

If revrange is None, return a list of all log entries in reverse
chronological order.

If revrange is a single revision, return a single log entry.

If revrange is a 2 element list [A,B] or tuple (A,B), return a list of log
entries starting at B and following that branch back to A or one of its
ancestors (not inclusive. If A is None, follow branch B back to the
beginning of history. If B is None, list all descendants in reverse
chronological order.

	
ls(rev, path, recursive=False, recursive_dirs=False, directory=False, report=())

	List directory or file

	Parameters:	
	rev – The revision to use.

	path – The path to list. May start with a ‘/’ or not. Directories
may end with a ‘/’ or not.

	recursive – Recursively list files in subdirectories.

	recursive_dirs – Used when recursive=True, also list directories.

	directory – If path is a directory, list path itself instead of
its contents.

	report – A list or tuple of extra attributes to return that may
require extra processing. Recognized values are ‘size’,
‘target’, ‘executable’, and ‘commit’.

Returns a list of dictionaries with the following keys:

	type

	The type of the file: ‘f’ for file, ‘d’ for directory, ‘l’ for
symlink.

	name

	The name of the file. Not present if directory=True.

	size

	The size of the file. Only present for files when ‘size’ is in
report.

	target

	The target of the symlink. Only present for symlinks when
‘target’ is in report.

	executable

	True if the file is executable, False otherwise. Only present
for files when ‘executable’ is in report.

Raises PathDoesNotExist if the path does not exist.

	
pdiff(rev)

	Diff from the rev’s parent(s)

	Parameters:	rev – The rev to compute the diff from its parent.

	Returns str:	The diff.

The returned string is a unified diff that the rev introduces with a
prefix of one (suitable for input to patch -p1).

	
private_path

	Get the path to a directory which can be used to store arbitrary data

This directory should not conflict with any of the repository internals.
The directory should be created if it does not already exist.

	
readlink(rev, path)

	Get symbolic link target

	Parameters:	
	rev – The revision to use.

	path (str) – The path to the file. Must be a symbolic link.

	Returns str:	The target of the symbolic link.

	Raises:	
	PathDoesNotExist – if the path does not exist.

	BadFileType – if the path is not a symbolic link.

	
tags()

	Get list of tags

	Returns:	The tags in the repository

	Return type:	list of str

	
tip(head)

	Find the tip of a named head

	Parameters:	head (str) – name of head to look up

	Returns:	revision identifier of head

The returned identifier should be a valid input for VCSRepo.ls().
and respect the branch name in the returned identifier if applicable.

BlameInfo

	
class anyvcs.common.BlameInfo(rev, author, date, line)

	Represents an annotated line in a file for a blame view.

	Variables:	
	rev – Revision at which the line was last changed

	author (str) – Author of the change

	date (datetime) – Timestamp of the change

	line (str) – Line data from the file.

CommitLogEntry

	
class anyvcs.common.CommitLogEntry(rev, parents, date, author, message)

	Represents a single entry in the commit log

	Variables:	
	rev – Revision name

	parents – Parents of the revision

	date (datetime) – Timestamp of the revision

	author (str) – Author of the revision

	message (str) – Message from committer

	
subject

	First line of the commit message.

FileChangeInfo

	
class anyvcs.common.FileChangeInfo(path, status, copy=None)

	Represents a change to a single path.

	Variables:	
	path (str) – The path that was changed.

	status (str) – VCS-specific code for the change type.

	copy – The source path copied from, if any.

Git-specific functionality

GitRepo

	
class anyvcs.git.GitRepo(path, encoding='utf-8')

	A git repository

Valid revisions are anything that git considers as a revision.

Mercurial-specific functionality

HgRepo

	
class anyvcs.hg.HgRepo(path, encoding='utf-8')

	A Mercurial repository

Valid revisions are anything that Mercurial considers as a revision.

Subversion-specific functionality

SvnRepo

	
class anyvcs.svn.SvnRepo(path)

	A Subversion repository

Unless otherwise specified, valid revisions are:

	an integer (ex: 194)

	an integer as a string (ex: “194”)

	a branch or tag name (ex: “HEAD”, “trunk”, “branches/branch1”)

	a branch or tag name at a specific revision (ex: “trunk:194”)

Revisions have the following meanings:

	HEAD always maps to the root of the repository (/)

	
	Anything else (ex: “trunk”, “branches/branch1”) maps to the corresponding

	path in the repository

	The youngest revision is assumed unless a revision is specified

For example, the following code will list the contents of the directory
branches/branch1/src from revision 194:

>>> repo = SvnRepo(path)
>>> repo.ls('branches/branch1:194', 'src')

Branches and tags are detected in branches() and tags() by looking at the
paths specified in repo.branch_glob and repo.tag_glob. The default values
for these variables will detect the following repository layout:

	/trunk - the main development branch

	/branches/* - branches

	/tags/* - tags

If a repository does not fit this layout, everything other than branch and
tag detection will work as expected.

	
dump(stream, progress=None, lower=None, upper=None, incremental=False, deltas=False)

	Dump the repository to a dumpfile stream.

	Parameters:	
	stream – A file stream to which the dumpfile is written

	progress – A file stream to which progress is written

	lower – Must be a numeric version number

	upper – Must be a numeric version number

See svnadmin help dump for details on the other arguments.

	
load(stream, progress=None, ignore_uuid=False, force_uuid=False, use_pre_commit_hook=False, use_post_commit_hook=False, parent_dir=None)

	Load a dumpfile stream into the repository.

	Parameters:	
	stream – A file stream from which the dumpfile is read

	progress – A file stream to which progress is written

See svnadmin help load for details on the other arguments.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 anyvcs	

 	
 	
 anyvcs.common	

 	
 	
 anyvcs.git	

 	
 	
 anyvcs.hg	

 	
 	
 anyvcs.svn	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | O
 | P
 | R
 | S
 | T
 | V

A

 	
 	ancestor() (anyvcs.common.VCSRepo method)

 	anyvcs (module)

 	anyvcs.common (module)

 	
 	anyvcs.git (module)

 	anyvcs.hg (module)

 	anyvcs.svn (module)

B

 	
 	blame() (anyvcs.common.VCSRepo method)

 	
 	BlameInfo (class in anyvcs.common)

 	branches() (anyvcs.common.VCSRepo method)

C

 	
 	canonical_rev() (anyvcs.common.VCSRepo method)

 	cat() (anyvcs.common.VCSRepo method)

 	changed() (anyvcs.common.VCSRepo method)

 	
 	clone() (in module anyvcs)

 	CommitLogEntry (class in anyvcs.common)

 	compose_rev() (anyvcs.common.VCSRepo method)

 	create() (in module anyvcs)

D

 	
 	diff() (anyvcs.common.VCSRepo method)

 	
 	dump() (anyvcs.svn.SvnRepo method)

E

 	
 	empty() (anyvcs.common.VCSRepo method)

F

 	
 	FileChangeInfo (class in anyvcs.common)

G

 	
 	GitRepo (class in anyvcs.git)

H

 	
 	heads() (anyvcs.common.VCSRepo method)

 	
 	HgRepo (class in anyvcs.hg)

L

 	
 	load() (anyvcs.svn.SvnRepo method)

 	
 	log() (anyvcs.common.VCSRepo method)

 	ls() (anyvcs.common.VCSRepo method)

O

 	
 	open() (in module anyvcs)

P

 	
 	pdiff() (anyvcs.common.VCSRepo method)

 	
 	private_path (anyvcs.common.VCSRepo attribute)

 	probe() (in module anyvcs)

R

 	
 	readlink() (anyvcs.common.VCSRepo method)

S

 	
 	subject (anyvcs.common.CommitLogEntry attribute)

 	
 	SvnRepo (class in anyvcs.svn)

T

 	
 	tags() (anyvcs.common.VCSRepo method)

 	
 	tip() (anyvcs.common.VCSRepo method)

V

 	
 	VCSRepo (class in anyvcs.common)

 nav.xhtml

 Table of Contents

 		python-anyvcs 1.4 (1.4.0)

 		The primary API

 		Opening and Creating

 		VCSRepo

 		BlameInfo

 		CommitLogEntry

 		FileChangeInfo

 		Git-specific functionality

 		GitRepo

 		Mercurial-specific functionality

 		HgRepo

 		Subversion-specific functionality

 		SvnRepo

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

